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Abstract
Sensor data collected by Internet of Things (IoT) devices can reveal
sensitive personal information about individuals, raising significant
privacy concerns when shared with semi-trusted service providers,
as theymay extract this information usingmachine learningmodels.
Data obfuscation empowered by generative models is a promising
approach to generate synthetic data such that useful information
contained in the original data is preserved while sensitive informa-
tion is obscured. This newly generated data will then be shared with
service providers instead of the original sensor data. In this work,
we propose PrivDiffuser, a novel data obfuscation technique based
on a denoising diffusion model that achieves a superior trade-off
between data utility and privacy by incorporating effective guid-
ance techniques. Specifically, we extract latent representations that
contain information about public and private attributes from sensor
data to guide the diffusion model, and impose mutual information-
based regularization when learning the latent representations to
alleviate the entanglement of public and private attributes, thereby
increasing the effectiveness of guidance. Evaluation on three real-
world datasets containing different sensing modalities reveals that
PrivDiffuser yields a better privacy-utility trade-off than the state-
of-the-art in data obfuscation, decreasing the utility loss by up to
1.81% and the privacy loss by up to 3.42%. Moreover, compared with
existing obfuscation approaches, PrivDiffuser offers the unique ben-
efit of allowing users with diverse privacy needs to protect their
privacy without having to retrain the generative model.
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1 Introduction
The growing adoption of IoT devices brings data collection closer to
our intimate spaces. Numerous IoT devices, such as smart home sys-
tems and wearables, are equipped with cameras, microphones, and
inertial measurement units (IMUs), enabling them to collect a wide
range of data inconspicuously. For device limitations and model
security, these data are often sent to the cloud to make desired
inferences using powerful deep learning models, e.g., to extract
and analyze users’ public attributes. While the service provider is
assumed to faithfully perform the desired inferences, they may
also perform unwanted inferences on these data, e.g., to extract
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Figure 1: The workflow of PrivDiffuser
users’ private attributes. This honest-but-curious (HBC) adversary
might sell this sensitive information or use it for targeted advertise-
ment. For example, an individual’s motion data collected for fitness
tracking can be used to infer their age, gender, or body size [17, 27].
Similarly, audio and video recorded by a baby camera for sleep mon-
itoring can be used to infer the room layout and dimensions [30].
These intrusive inferences pose a significant threat to our privacy,
calling for the development of privacy-preserving techniques that
are well-suited for IoT devices and applications.

Although there are effective privacy-preserving techniques for
structured data, sensor data presents unique challenges for pri-
vacy protection. First, the private attributes are usually embedded
in time-series emitted by sensors but not directly present in the
dataset, making it difficult to mask or perturb them. For example, a
smartwatch is not equipped with a sensor for measuring weight,
an attribute deemed private by some users, but it integrates a va-
riety of sensors for tracking different health metrics from which
an individual’s weight might be estimated. In this case, weight
measurements are not explicitly present in the dataset. Second,
the private attribute can be any attribute of the user and does not
have to be their identity, which is normally protected in differ-
ential privacy [2]. Existing privacy-preserving techniques based
on Local Differential Privacy (LDP) [15, 42] are not suitable for
sensor data because adding calibrated noise directly to the sensor
data could substantially reduce its utility. While it is possible to
extract the private attribute from sensor data, add noise to that
specific attribute, and then reconstruct the data using a decoder,
even a weak entanglement between public and private attributes
in the latent space would void the privacy guarantees provided by
differential privacy [39]. The complete disentanglement of these
attributes proves to be extremely difficult in some cases. The overall
level of privacy is also determined by a fixed privacy budget in dif-
ferential privacy, which cannot be translated to a continual setting
in a straightforward manner. Existing cryptographic techniques for
privacy protection, such as secure multi-party computation and ho-
momorphic encryption [3], are computationally expensive for deep
learning, and are unsuitable for resource-constrained IoT devices.

Privacy-preserving techniques based on generative models cast
data obfuscation as a conditional generation problem, i.e. the syn-
thesized data must contain enough information for desired in-
ferences (concerning public attributes), yet little sensitive infor-
mation to prevent unwanted inferences (concerning private at-
tributes) [17, 27, 32]. Since sampling from a trained generative
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model is relatively inexpensive, obfuscation can be performed on
IoT devices [40]. Moreover, generative models produce new data in
the same space as the input data, allowing downstream applications
to seamlessly consume the obfuscated data. For these reasons, ob-
fuscation techniques that rely on generative models have received
significant attention for real-world IoT applications.

In this work, we propose PrivDiffuser, a novel obfuscation tech-
nique for sensor data based on a denoising diffusion model. PrivD-
iffuser achieves a superior trade-off between utility and privacy
compared to the previous work that integrates a conditional gen-
erative adversarial network (GAN), and allows modifying the def-
inition and importance of private attributes1 at will, eliminating
the need to retrain the diffusion model. Figure 1 shows the work-
flow of PrivDiffuser. In the forward process of the diffusion model,
a small amount of Gaussian noise is added to the sensor data at
each step, transforming it to near isotropic Gaussian noise after
a number of steps. The backward process inverts this by training
a machine learning model to predict the noise added at each step.
This allows the diffusion model to generate realistic sensor data by
progressively denoising randomly sampled Gaussian noise.

By guiding the diffusion process using the information extracted
from the original sensor data, we ensure that the newly gener-
ated data contains rich information about the public attributes
(preserving utility) and minimum information about the private
attributes (mitigating privacy loss). To achieve this, guidance is
provided based on positive conditions for public attributes and
negative conditions for private attributes. Although classifier-free
guidance [19] is more efficient than classifier guidance [12] (since it
uses classification labels rather than gradients derived from an aux-
iliary classifier), the labels do not provide substantive information
to reconstruct the obfuscated data. Thus, we adopt classifier-free
guidance to condition the diffusion model on the public attributes
using the latent features learned by a surrogate utility model. For
the private attributes, we design a negative conditioning technique
based on classifier guidance and enhance it using forward universal
guidance [6]. This conditioning technique is suitable for data ob-
fuscation as it allows guiding a trained diffusion model during the
sampling stage, enabling users with diverse privacy needs to pro-
tect their private attributes with minimum retraining effort. Lastly,
the entanglement between the public and private attributes creates
an intricate trade-off between utility and privacy. To maximally
disentangle these attributes, we impose mutual information-based
regularization to extract a latent representation for each private
attribute that is weakly correlated with the public attributes, such
that applying negative conditions to mitigate privacy loss does not
compromise utility. Our contribution is threefold:

• Wepropose a novel data obfuscationmodel based on a denois-
ing diffusion model and design effective guidance techniques
for positive and negative conditions governing data utility
and privacy loss, respectively. These guidance techniques
offer the flexibility to navigate the privacy-utility trade-off
without retraining the diffusion model.

• We incorporate a mutual information-based regularization
to extract latent representations of private attributes that are

1Users sending data to a service provider may have different private attributes or
prioritize privacy to varying degrees, and both of which can change over time. However,
their public attribute remains the same, as it is tied to the requested service.

weakly correlated with public attributes to achieve a better
privacy-utility trade-off. The private attribute representa-
tions are utilized to guide a trained diffusion model without
counteracting the effect of the positive conditions.

• We evaluate the proposed sensor data obfuscation model,
PrivDiffuser, on three datasets to corroborate its versatility
and efficacy for different sensing modalities and private at-
tribute definitions. Our results show that it outperforms the
state-of-the-art GAN-based obfuscation model with respect
to privacy and utility, and can be easily extended to condition
multiple public or private attributes.

We note that PrivDiffuser is intended to be deployed on the user’s
IoT device, ideally as a low-level module such that it has access to
the raw sensor readings. This is necessary to ensure that third-party
applications can only access the data obfuscated by PrivDiffuser.

2 Related Work
2.1 Privacy-Aware Feature Extraction
Privacy-aware feature extraction involves projecting sensor data
into a subspace, producing a low-dimensional representation that
contains the maximum amount of information about the public
attribute(s) and almost no information about the private attribute(s).
Previous work in this area combines deep learning and adversarial
training. For example, Privacy Adversarial Network (PAN) [26] and
DeepObfuscator [23] train an encoder alongside a classification
model for the target task and two adversarial networks aiming to
reconstruct the original data and predict the private attribute(s) re-
spectively. Similarly, Li et al. [22] used mutual information between
random variables to train a feature extractor that minimizes privacy
loss while maintaining data utility through adversarial training. The
common drawback of these techniques is that the learned repre-
sentation is not in the same space as the original sensor data. Thus,
it cannot be readily consumed by existing applications that take
sensor data as input, requiring substantial changes to the apps,
which is laborious and often impractical.

2.2 Data Obfuscation via Generative Models
Data obfuscation can be performed using a sequence of transfor-
mations that result in an output sharing the same dimensions as
the input data, allowing seamless integration with existing applica-
tions. Given the input sensor data, a generative model can produce
new data by obscuring the sensitive information contained in the
original data while keeping the useful information for the target
inference task. If the generative process is conditioned properly,
this approach leads to a reasonable trade-off between data utility
and privacy loss. DoppelGANger [24] shows the possibility of syn-
thesizing high-fidelity time-series data using GANs and recurrent
neural networks. But it does not obscure sensitive information in
the generated data. An autoencoder-based data obfuscation model
is proposed in [27], where the autoencoder is regularized using
multiple loss terms to reduce sensitive information in its latent
space. Olympus [32] uses adversarial training to iteratively train
an autoencoder-based obfuscation model and an attacker model.
This allows minimizing privacy loss while maintaining the utility
of data. ObscureNet [17] uses a conditional variational autoencoder
(CVAE) for data obfuscation. A discriminator network classifies the
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private attribute given the latent representation extracted by the
encoder/generator. The discriminator is jointly trained with the
CVAE in an adversarial fashion to encourage the CVAE to obscure
sensitive information in the latent space. Recently, Chen et al. pro-
posed MaSS [9], a data transformation model based on information
theoretic measures that suppresses multiple sensitive private at-
tributes. The authors assume the availability of two types of public
attributes, annotated and unannotated, which is different from our
setting. Moreover, the evaluation metric defined in that paper con-
siders any intrusive inference accuracy below the random guessing
level as equally effective as random guessing. In summary, existing
data obfuscation models are mostly built on the autoencoder archi-
tecture, where the encoder acts as a generator and is jointly trained
with a discriminator in the same spirit as GAN. For this reason, we
classify them as GAN-based obfuscation models.

Diffusion models [35] are another type of generative models that
have gained popularity due to their outstanding performance in
generating high-quality, realistic images or videos. Ho et al. pro-
posed Denoising Diffusion Probabilistic Model (DDPM) [18] by
modeling the diffusion process as a Markov chain. In DDPM, the
sampling (denoising) process can be slow because generating a
sample requires synthesizing data in all previous steps. To accel-
erate the sampling process, Song et al. [36] proposed Denoising
Diffusion Implicit Model (DDIM). DDIM offers a non-Markovian
perspective on the diffusion process, enabling faster sampling. A
recent study [41] suggests that the denoising diffusion model is
suitable for data obfuscation if the diffusion model is conditioned
on the public attribute only, as other attributes will be sampled
randomly from a diverse distribution learned from the training
data. This white-listing approach ensures that only information
about the public attribute is embedded in the obfuscated data, as
illustrated in Figure 2. However, since attributes are entangled in
the latent space, some information about the other attributes will
be included in the obfuscated data inevitably. This problem was
not addressed in [41]. That said, the denoising diffusion model is
indeed a promising approach for data obfuscation, offering several
advantages over GAN-based obfuscation. Specifically, training a
diffusion model does not entail a min-max game between a gen-
erator and a discriminator, hence it is more stable and efficient.
Further, in GAN-based obfuscation, different privacy-utility trade-
offs can be achieved by tuning the weight of the discriminator loss,
but this requires retraining the obfuscation model. In contrast, we
build PrivDiffuser on top of a diffusion model, making it possible to
achieve different trade-offs by tuning parameters at the sampling
stage, without retraining the obfuscation model. More details are
provided in Section 4.3.1 and 6.4.

2.3 Conditional Diffusion Models
The output of an unconditional diffusion model is highly stochastic
due to the randomness in the backward diffusion process. Extensive
research has been done in recent years on conditioning the diffu-
sion model and guiding the sampling process so as to control the
content of the generated data [12, 19, 28]. In particular, Dhariwal
et al. [12] proposed classifier guidance, a guidance technique that
uses the gradient of an auxiliary classifier to condition the diffusion
model on the target class information. Since the auxiliary classifier
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Figure 2: GAN-based obfuscation uses a discriminator to hide
information about the private attribute in 2○+ 3○. PrivDif-
fuser is conditioned on the public attribute to include infor-
mation in 1○+ 3○ and the negated private attribute to exclude
private information in 3○. The white-listing characteristic of
diffusion-based obfuscation offers protection for the private
attribute and all attributes that were not listed by the user,
extending privacy protection to 2○+ 3○+ 4○ (see Appendix A).
For ease of presentation, the entanglement between the pub-
lic/private attribute and other attributes is not shown.
takes as input the noisy data generated by the diffusion model,
training it under various noise levels is extremely difficult. Bansal
et al. proposed universal guidance [6], a guidance technique that sub-
stitutes the noisy input of the auxiliary classifier during sampling
with predicted clean data, making it possible to train the auxiliary
classifier on clean data for improved performance. Ho et al. [19]
proposed classifier-free guidance, a guidance technique that directly
conditions the diffusion model using the (one-hot encoded) label of
the target class. Considering that the label itself has no semantic
structure and labels in multiple conditions might be conflicting,
the latent representation learned by a semantic encoder is used
to condition a DDIM in [29]. Other studies utilized pre-trained
image-language models, such as contrastive language-image pre-
training [31], to guide the image generation process using text
prompts [21, 28]. Further, diffusion models have achieved state-of-
the-art performance in image inpainting tasks through conditioning
on the masked images [33]. Yet image inpainting [37] has funda-
mental differences with data obfuscation because the unwanted
content in data obfuscation is the information that is not explicitly
included in the dataset but can be inferred from the sensor data.
The above guidance techniques only consider a positive condition
that the diffusion model should include in the generated data.

In many applications, it is crucial to also guide the diffusion
model with negative conditions, such that specific content is re-
moved from the synthesized data. Du et al. [14] and Liu et al. [25]
interpreted diffusion models as energy-based models and proposed
the composition of multiple text conditions through conjunction
and negation operations for visual generation. The conjunction
operation enables the composition of multiple positive conditions,
whereas the negation operation allows the composition of nega-
tive conditions. These negation techniques require pre-training
a series of diffusion models, each conditioned on one of the re-
spective conditions. This drastically increases the training cost.
Similar approaches have also been used in text-to-image models
based on latent diffusion models [13, 16]. Armandpour et al. [4]
found that the composition of complex text input conditions re-
quires conditional independence between positive and negative
conditions, which is not often the case in the real world. To address
this, the authors proposed the Perp-Neg technique to compute the
overlapped semantics between the denoising score components of
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the positive and negative conditions and then subtract it from the
denoising score component of the negative condition. However,
we found empirically that Perp-Neg is not very effective for sen-
sor data obfuscation. An alternative approach to disentangle the
positive and negative conditions is to project the representations
of these conditions onto the orthogonal space of each other. For
instance, Deng et al. [11] proposed extracting latent representations
of the public attribute that are orthogonal to the subspace of the
private attribute, where the latent representations for the public
and private attributes are extracted using dedicated encoders. This
approach requires knowledge of the private attribute prior to the
training of the public attribute encoder, which is not ideal when the
private attribute can change over time, because the diffusion-based
data obfuscation model must be retrained in that case. In our work,
we propose a mutual information-based regularization approach
for extracting latent representations of the private attribute. This
enables post-training guidance based on the negative condition
using the latent representations of the private attribute, such that
PrivDiffuser can be reused to protect different private attributes
without retraining. We expand on this in Section 4.3.
Novelty of this work: We put forward an innovative approach to
data obfuscation based on the diffusion process that is well-suited
for IoT systems and achieves a superior privacy-utility trade-off
by alleviating the entanglement of public and private attributes in
a latent space. Our work differs from the previous work on con-
ditional denoising diffusion models in three ways. First, existing
methods are mostly designed for text-to-image generation tasks,
whereas our work takes multi-channel sensor data segments (mul-
tivariate time-series) as input and utilizes a diffusion model to
obscure the sensitive information contained in sensor data. Sec-
ond, to guide text-to-image generation, off-the-shelf models, such
as Word2Vec [10], are used to extract word embeddings from the
available text prompts. But, in data obfuscation, public and private
attributes must be inferred and transformed, e.g., projected into a
latent space, before they are used to condition the diffusion model.
Third, we incorporate a mutual information-based regularization
to apply the negative condition without counteracting the effect of
the positive condition, leading to a better privacy-utility trade-off.

3 Background on Conditional Denoising
Diffusion Model

3.1 Training
A diffusion model consists of a forward diffusion process and a
backward diffusion process. The forward process is divided into
𝑇 timesteps, where Gaussian noise is added to the data in each
timestep. We denote the original data as 𝑥0, its latent probability
distribution as 𝑞, and the perturbed data at timestep 𝑡 as 𝑥𝑡 . The
amount of noise added at each timestep 𝑡 is modeled using a vari-
ance scheduler 𝛽𝑡 , where 0<𝛽1< · · · <𝛽𝑇 <1. In DDPM, the diffusion
process is modeled as a Markov process, such that the noisy data
at timestep 𝑡 of the forward process depends on the data at the
previous timestep 𝑡 − 1 as follows:

𝑝 (𝑥𝑡 |𝑥𝑡−1) = N(
√︁

1 − 𝛽𝑡 𝑥𝑡−1, 𝛽𝑡 I). (1)
The downside of using the above relation is that the denoised data
at every timestep must be computed and stored in the sampling

process. This can be addressed by rewriting (1) such that 𝑥𝑡 depends
on 𝑥0 only. Specifically, by introducing 𝛼𝑡 = 1−𝛽𝑡 and 𝛼 =

∏𝑇
𝑡=1 𝛼𝑡 ,

we can write:
𝑝 (𝑥𝑡 |𝑥0) = N

(√
𝛼𝑥0, (1 − 𝛼)I

)
, (2)

and its reparameterization yields 𝑥𝑡 =
√
𝛼𝑥0 +

√
1 − 𝛼𝜖, where 𝜖 fol-

lows a standard Gaussian distribution, i.e. 𝜖∼N(0, I). Notice that for
sufficiently large𝑇 , 𝑥𝑇 will have nearly an isotropic Gaussian distri-
bution. This offers an intuitive interpretation of the diffusion model:
novel data (𝑥0) can be generated by sampling 𝑥𝑇 from the standard
Gaussian distribution and progressively denoising it using the reverse
process. To this end, the intractable reverse process 𝑞(𝑥𝑡−1 |𝑥𝑡 ) must
be approximated using a neural network model 𝑝𝜃 . When the noise
schedule 𝛽 is sufficiently small, 𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ) can also be considered
to have a Gaussian distribution:

𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ) = N
(
𝜇𝜃 (𝑥𝑡 , 𝑡), Σ𝜃 (𝑥𝑡 , 𝑡)

)
, (3)

where 𝜇𝜃 and Σ𝜃 are its mean and variance, respectively. Follow-
ing Ho et al. [18], we use a time-dependent constant (𝛽2

𝑡 ) for the
variance to simplify training, and train a neural network to predict
the noise (𝜖) that is added to data rather than a neural network
predicting the mean of the Gaussian distribution 𝑝𝜃 . Let 𝜖𝜃 (𝑥𝑡 ) be
the model that predicts 𝜖 . This noise-prediction network is trained
using the mean squared error (MSE) between the actual noise and
the predicted noise:

L𝜃 = ∥𝜖 − 𝜖𝜃 (𝑥𝑡 , 𝑡)∥2
2 = ∥𝜖 − 𝜖𝜃 (

√
𝛼𝑥0 +

√
1 − 𝛼𝜖, 𝑡)∥2

2, (4)
where 𝜖 is the noise randomly drawn from N(0, I), and 𝑡 is the
timestep uniformly sampled between 1 and 𝑇 . We use the UNet
architecture [34] for 𝜖𝜃 (𝑥𝑡 ). We note that the noise-prediction net-
work can be used to derive a score function as outlined in [12]:

∇𝑥𝑡 log 𝑝𝜃 (𝑥𝑡 ) = − 1
√

1 − 𝑎𝑡
𝜖𝜃 (𝑥𝑡 ) . (5)

To condition the diffusion model, the condition 𝑐 is introduced
in the backward diffusion process. Concretely, the noise prediction
model receives 𝑐 as input, so it is expressed as 𝜖𝜃 (𝑥𝑡 , 𝑡, 𝑐). Similar to
an unconditional diffusion model, the predicted noise is compared
with the noise introduced in the forward diffusion process and the
following MSE loss is optimized to train this model [18]:

L𝜃 = ∥𝜖 − 𝜖𝜃 (
√
𝛼𝑥0 +

√
1 − 𝛼𝜖, 𝑡, 𝑐)∥2

2 . (6)
We discuss how to encode an attribute to get 𝑐 in Section 4.2.

3.2 Sampling
We briefly explain how to guide the diffusion model via classifier
guidance and classifier-free guidance during sampling in DDIM [36].

3.2.1 Classifier Guidance [12]. In this approach, the condition is
the output label (𝑦) of an auxiliary classifier parameterized by 𝜙 .
This classifier is trained to predict 𝑦 given the input data 𝑥𝑡 . The
score function for 𝑝 (𝑥𝑡 )𝑝 (𝑦 |𝑥𝑡 ) is given by:

∇𝑥𝑡 log
(
𝑝𝜃 (𝑥𝑡 )𝑝𝜙 (𝑦 |𝑥𝑡 )

)
=∇𝑥𝑡 log𝑝𝜃 (𝑥𝑡 ) + ∇𝑥𝑡 log𝑝𝜙 (𝑦 |𝑥𝑡 )

=−
𝜖𝜃 (𝑥𝑡 )−

√
1 − 𝑎𝑡∇𝑥𝑡 log𝑝𝜙 (𝑦 |𝑥𝑡 )√

1 − 𝑎𝑡
,

(7)

where the last derivation is obtained by using (5). We now define
a new epsilon prediction 𝜖 (𝑥𝑡 ) corresponding to the score of the
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joint distribution:
𝜖 (𝑥𝑡 ) := 𝜖𝜃 (𝑥𝑡 ) −

√
1 − 𝑎𝑡∇𝑥𝑡 log𝑝𝜙 (𝑦 |𝑥𝑡 ) . (8)

This modified noise prediction 𝜖 (𝑥𝑡 ) is used instead of 𝜖𝜃 (𝑥𝑡 ) during
sampling to repeatedly predict 𝑥𝑡−1 given 𝑥𝑡 , until we get 𝑥0 [12]:

𝑥𝑡−1 =
√
𝛼𝑡−1

(𝑥𝑡 − √
1 − 𝛼𝑡𝜖 (𝑥𝑡 )√
𝛼𝑡

)
+
√

1 − 𝛼𝑡−1𝜖 (𝑥𝑡 ). (9)

Remark. Since 𝜖 (𝑥𝑡 ) depends on the unconditional diffusion
model rather than the conditional diffusion model, it is not neces-
sary to train 𝜖𝜃 (𝑥𝑡 , 𝑡, 𝑦) for this approach and it suffices to introduce
the condition at sampling time. This is beneficial because changing
the condition does not require retraining the diffusion model. We
expand on this in Section 4.
3.2.2 Classifier-free Guidance [19]. Classifier guidance requires
training an additional classifier to obtain its gradient∇𝑥𝑡 log𝑝 (𝑦 |𝑥𝑡 )
for sampling. In classifier-free guidance, an implicit classifier is ob-
tained by jointly training a conditional and an unconditional diffu-
sion model. Let the unconditional denoising diffusion model 𝑝𝜃 (𝑥)
be parameterized through a score estimator 𝜖𝜃 (𝑥𝑡 , 𝑡) and the condi-
tional model 𝑝𝜃 (𝑥 |𝑦) through 𝜖𝜃 (𝑥𝑡 , 𝑡, 𝑦), with 𝑦 being the one-hot
encoding of a given class label. These twomodels can be obtained by
training a single neural network because 𝜖𝜃 (𝑥𝑡 , 𝑡)=𝜖𝜃 (𝑥𝑡 , 𝑡, 𝑦=∅),
where 𝑦=∅ indicates that no bit is set in 𝑦.

Considering the following relation:

𝑝 (𝑦 |𝑥𝑡 ) ∝
𝑝 (𝑥𝑡 |𝑦)
𝑝 (𝑥𝑡 )

, (10)

the score function of 𝑝𝜃 (𝑦 |𝑥) is given by:
∇𝑥𝑡 log𝑝𝜃 (𝑦 |𝑥) = ∇𝑥𝑡 log𝑝𝜃 (𝑥𝑡 |𝑦) − ∇𝑥𝑡 log 𝑝𝜃 (𝑥𝑡 )

= − 1
√

1 − 𝑎𝑡
(
𝜖𝜃 (𝑥𝑡 , 𝑡, 𝑦) − 𝜖𝜃 (𝑥𝑡 , 𝑡)

)
.

(11)

By plugging (11) into (8) and introducing the scale term𝑤 , a hyper-
parameter that governs the importance of guidance, we have:
𝜖𝜃 (𝑥𝑡 , 𝑡, 𝑦) = 𝜖𝜃 (𝑥𝑡 , 𝑡, 𝑦)−

√
1 − 𝑎𝑡𝑤∇𝑥𝑡 log𝑝𝜃 (𝑦 |𝑥𝑡 )

= 𝜖𝜃 (𝑥𝑡 , 𝑡, 𝑦)−
√

1 − 𝑎𝑡𝑤
(
∇𝑥𝑡 log 𝑝𝜃 (𝑥𝑡 |𝑦)−∇𝑥𝑡 log 𝑝𝜃 (𝑥𝑡 )

)
= (1 +𝑤)𝜖𝜃 (𝑥𝑡 , 𝑡, 𝑦) −𝑤𝜖𝜃 (𝑥𝑡 , 𝑡) .

(12)

This 𝜖𝜃 (𝑥𝑡 , 𝑡, 𝑦) is used in the sampling process as discussed in [19].
Remark. Since 𝜖𝜃 (𝑥𝑡 , 𝑡, 𝑦) depends on the conditional diffusion

model, the condition must be introduced at the training stage so
that it can affect the sampling process.

4 Guiding Diffusion Sampling Towards a
Desirable Privacy-Utility Trade-off

We propose obfuscating sensor data via the iterative denoising
procedure of a diffusion model that is guided to add information
about the true public attribute label while ensuring that no infor-
mation about the true private attribute label will be added in this
process. Below we describe our threat model and outline the spe-
cific techniques that are employed in the training and sampling
stages of PrivDiffuser to achieve a good trade-off between utility
and privacy. We first discuss how to encode the public and private
attributes and use them to condition the diffusion model. We then
introduce an effective regularization technique to alleviate the en-
tanglement between these attributes. Finally, we explain how to

Figure 3: Architecture of PrivDiffuser

adapt the training process when the user specifies multiple public
or private attributes. These techniques are shown in Figure 3. We
denote the labels for the public attribute and the private attribute as
𝑦𝑝 and 𝑦𝑠 , and the latent representation of 𝑦𝑝 and 𝑦𝑠 extracted by
the feature extractors as 𝑧𝑝 and 𝑧𝑠 , respectively. 𝜂 is the parameter
of the auxiliary privacy model predicting 𝑦𝑠 , and 𝜙 is the parame-
ter of the surrogate utility model predicting 𝑦𝑝 . These models are
described in Section 4.2 and 4.3.

4.1 Threat Model
We consider an HBC adversary that has access to sensor data 𝑥
shared by users to faithfully perform desired inferences about their
public attributes 𝑦𝑝 . Being curious, the adversary wishes to infer
certain private attributes 𝑦𝑠 that are not explicitly disclosed from
the shared sensor data, via an Attribute Inference Attack (AIA).
We assume that the adversary has no metadata about the users
who shared their sensor data, does not know if the shared data was
obfuscated, and performs the desired and intrusive inferences on a
remote server using models that are not exposed to users. These
inference models can be trained on a public dataset that contains
sensor data and metadata (i.e. corresponding attributes). PrivD-
iffuser’s objective is to mitigate such AIAs by transforming raw
sensor data 𝑥 into 𝑥 ′, in a way that ensures the desired inferences
can be performed accurately, i.e. 𝑃 (𝑦𝑝 |𝑥 ′)≈𝑃 (𝑦𝑝 |𝑥), while reducing
the adversary’s ability to infer private attributes to the level of ran-
dom guessing i.e., 𝑃 (𝑦𝑠 |𝑥 ′)≈𝑃random guess. PrivDiffuser is assumed
to be capable of replacing raw data with obfuscated data on the user
device, before sharing the data with the HBC adversary. It does not
require knowledge of the intrusive and desired inference models
used by the adversary and uses surrogate models instead.

4.2 Classifier-free Guidance for Enhanced Data
Utility

Classifier-free guidance offers better sampling quality than classi-
fier guidance by training a diffusion model with both conditioned
and unconditioned data [19]. To exploit the simplicity and efficiency
of classifier-free guidance while tackling the unique challenges in
sensor data obfuscation, we propose training a classifier to predict
the public attribute and conditioning the diffusion model with the
latent representation extracted by the first few layers of this classi-
fier (i.e., the feature extractor part) rather than its output. Intuitively,
the learned latent representation carries richer semantics about the
public attribute compared to the one-hot encoded public attribute
label. Thus, using this representation for classifier-free guidance
makes the obfuscated data more similar to real data.
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The public attribute classifier serves as our surrogate utility model.
It takes a raw sensor data segment 𝑥 as input and predicts the public
attribute label 𝑦𝑝 . Note that the actual model used in the target task
to predict the public attribute may differ from the surrogate utility
model, hence the name. For instance, the obfuscated data could
eventually be processed on the server side by a more sophisticated
or deeper neural network than the surrogate utility model.

We adopt a convolutional neural network as our surrogate utility
model. This network consists of 2 convolutional layers followed by
4 fully connected (FC) layers. The convolutional layers and the first
3 FC layers constitute the feature extractor. The first FC layer takes
as input the latent representations learned by the convolutional
layers and compresses the latent representation to a size of 256. The
second and third FC layers then scale down the latent representa-
tions using 128, and 60 neurons, respectively. The gradual decrease
in the size of the latent space forces the surrogate utility model
to condense important features that are highly correlated to the
public attribute and remove other information. We use ReLU as the
activation function and normalize the output of the third FC layer.
The output of the feature extractor, denoted as 𝑧𝑝 , is incorporated
as the condition 𝑐 in the diffusion model as described in Section 3.1.
We then stack the fourth FC layer after the feature extractor and
use the Softmax activation function to map 𝑧𝑝 into a probability
distribution over public attribute classes. The cross entropy loss is
used for training the surrogate utility model.

Given a trained surrogate utility model, we incorporate the
learned representation of the public attribute into the training
process of the diffusion model. Specifically, adaptive group nor-
malization (AdaGN) [12] is used to condition the diffusion model
on both the timestep 𝑡 and the latent representation 𝑧𝑝 :

AdaGN(ℎ,𝑦) = 𝑦𝑡GroupNorm(ℎ) + 𝑦𝑧𝑝 , (13)
where ℎ is the output of the first convolutional layer in the UNet’s
residual block, 𝑦𝑡 is the linear transformation of the positional
encoding [38] of the timestep 𝑡 , 𝑦𝑧𝑝 is the linear transformation of
the latent representation 𝑧𝑝 . Finally, 𝑦 := [𝑦𝑡 , 𝑦𝑧𝑝 ] is incorporated
as a condition into the UNet.

Once trained, the conditioned diffusion model is used in the
sampling process to ensure that the obfuscated data will contain
information about the same public attribute as the original sensor
data. We emphasize that the surrogate utility model is trained be-
fore training the diffusion model. This way, during sampling, the
surrogate utility model is simply used to obtain the representation
of the public attribute as we do not need to calculate its gradient
for classifier-free guidance. As a result, sampling is less expensive
in this case compared to the classifier guidance approach where
the gradient of the classifier must be computed for sampling.

4.3 Privacy Protection via Classifier Guidance
To minimize privacy loss, sampling must be done such that sensi-
tive information about the private attribute is not included in the
obfuscated data. To this end, we incorporate a negative condition
for each private attribute using the classifier guidance approach,
and call this classifier the auxiliary privacy model. A negative condi-
tion enforces the absence of information pertaining to a particular
label in the generated data, whereas a positive condition, which
is used for a public attribute, enforces the presence of information

pertaining to a particular label in the generated data. The primary
reason for conditioning the private attributes via classifier guidance
is that unlike classifier-free guidance that requires training a condi-
tional diffusion model, classifier guidance can be directly applied at
sampling time. This characteristic allows users with diverse privacy
needs to reuse the same pre-trained diffusion model conditioned on
a specific public attribute and eliminates the complexity of training
a conditional diffusion model that takes into account all potential
combinations of the conditions.

4.3.1 Combining Positive and Negative Conditions to Achieve a
Desirable Privacy-Utility Trade-off. We extend the derivations for
sampling using classifier guidance to the case that there are both
positive and negative conditions for public and private attributes,
respectively. The negative condition is denoted as 𝑦𝑠 , which rep-
resents the complement of 𝑦𝑠 or not(𝑦𝑠 ). Our goal is to compute
𝑝𝜃,𝜙,𝜂 (𝑥𝑡 |𝑦𝑝 , 𝑦𝑠 ). Considering a realistic scenario in which 𝑦𝑝 and
𝑦𝑠 are entangled, i.e., they are not conditionally independent, we
can write [13, 25]:

𝑝𝜃,𝜙,𝜂 (𝑥𝑡 |𝑦𝑝 , 𝑦𝑠 ) ∝ 𝑝𝜃,𝜙,𝜂 (𝑥𝑡 , 𝑦𝑝 , 𝑦𝑠 )

∝ 𝑝𝜃 (𝑥𝑡 )
𝑝𝜙 (𝑦𝑝 |𝑥𝑡 )
𝑝𝜂 (𝑦𝑠 |𝑦𝑝 , 𝑥𝑡 )

.
(14)

Taking the gradient of the logarithm of (14) w.r.t. 𝑥 yields:

∇𝑥𝑡 log
(
𝑝𝜃 (𝑥𝑡 )𝑝𝜙 (𝑦𝑝 |𝑥𝑡 )𝑝𝜂 (𝑦𝑠 |, 𝑦𝑝 , 𝑥𝑡 )

)
= (15)

∇𝑥𝑡 log𝑝𝜃 (𝑥𝑡 )+∇𝑥𝑡 log𝑝𝜙 (𝑦𝑝 |𝑥𝑡 )−∇𝑥𝑡 log 𝑝𝜂 (𝑦𝑠 |𝑦𝑝 , 𝑥𝑡 ) =

− 1
√

1 − 𝑎𝑡
𝜖𝜃 (𝑥𝑡 )+∇𝑥𝑡 log𝑝𝜙 (𝑦𝑝 |𝑥𝑡 )−∇𝑥𝑡 log𝑝𝜂 (𝑦𝑠 |𝑦𝑝 , 𝑥𝑡 ),

where in the last step we substituted the noise prediction model for
the score function using (5). Finally, we define 𝜖𝜃 (𝑥𝑡 , 𝑡, 𝑦𝑝 , 𝑦𝑠 ) that
is used in the sampling process:

𝜖𝜃 (𝑥𝑡 , 𝑡, 𝑦𝑝 , 𝑦𝑠 ) = 𝜖𝜃 (𝑥𝑡 ) −
√

1 − 𝑎𝑡∇𝑥𝑡 log 𝑝𝜙 (𝑦𝑝 |𝑥𝑡 )
+
√

1 − 𝑎𝑡∇𝑥𝑡 log 𝑝𝜂 (𝑦𝑠 |𝑦𝑝 , 𝑥𝑡 ) .
(16)

Recall that we use an implicit classifier for the public attribute
because classifier-free guidance is used in that case. Thus, we substi-
tute − 1√

1−𝑎𝑡
(
𝜖𝜃 (𝑥𝑡 , 𝑡, 𝑦𝑝 ) − 𝜖𝜃 (𝑥𝑡 , 𝑡)

)
for ∇𝑥𝑡 log𝑝𝜙 (𝑦𝑝 |𝑥𝑡 ) accord-

ing to (11), and use the latent representation 𝑧𝑝 instead of 𝑦𝑝 (as
discussed in Section 4.2) to update the noise-prediction network:

𝜖𝜃 (𝑥𝑡 , 𝑡, 𝑧𝑝 , 𝑦𝑠 ) = (1 +𝑤1)𝜖𝜃 (𝑥𝑡 , 𝑡, 𝑧𝑝 ) −𝑤1𝜖𝜃 (𝑥𝑡 , 𝑡)
+𝑤2

√
1 − 𝑎𝑡∇𝑥𝑡 log𝑝𝜂 (𝑦𝑠 |𝑧𝑝 , 𝑥𝑡 ).

(17)

The auxiliary privacy model 𝑝𝜂 (𝑦𝑠 |𝑦𝑝 , 𝑥𝑡 ) shares the same archi-
tecture as the surrogate utility model 𝑝𝜙 (𝑦𝑝 |𝑥𝑡 ), except that for the
auxiliary privacy model, we concatenate the public latent represen-
tation 𝑧𝑝 generated by 𝑝𝜙 (𝑦𝑝 |𝑥𝑡 ) with the flattened output of the
second convolutional layer in the feature extractor of the auxiliary
privacy model and feed the result to its first FC layer. Here𝑤1 and
𝑤2 are hyperparameters that are introduced to control the influence
of positive and negative conditions in the sampling (obfuscation)
process. By tuning these hyperparameters, one can navigate the
utility-privacy trade-off as discussed in Section 6.4.

4.3.2 Regularizing Auxiliary Privacy Model via Mutual Informa-
tion. The proposed approach for combining positive and negative
conditions relaxes the strong assumption that the corresponding
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attributes are conditionally independent. In this setting, guiding the
diffusion model toward generating obfuscated data that does not
contain information about the private attribute could remove in-
formation about the public attribute, worsening the privacy-utility
trade-off. For example, an individual’s height might be correlated
with their race, so one cannot simply combine these conditions
to generate sensor data that belongs to a tall person while hiding
their race. Thus, to achieve a desirable privacy-utility trade-off, we
encourage learning a latent representation of the private attribute,
𝑧𝑠 , that is weakly correlated with the latent representation of the
public attribute, 𝑦𝑝 , such that introducing the negative condition
will not counteract the effect of the positive condition.

We propose regularizing the auxiliary privacy model by minimiz-
ing the mutual information (MI) between 𝑧𝑠 and the public attribute
label 𝑦𝑝 . This is accomplished by augmenting the loss function of
the auxiliary privacy model, which will in turn affect the representa-
tion learned for the private attribute. Since computing the exact MI
between 𝑧𝑠 and𝑦𝑝 is intractable, we estimate the MI between 𝑧𝑠 and
𝑦𝑝 by using the Mutual Information Neural Estimator (MINE) [7], a
neural network that is trained to predict the approximate MI given
𝑧𝑠 and 𝑦𝑝 . We choose the one-hot encoded public attribute label
𝑦𝑝 rather than the latent representation 𝑧𝑝 because although both
correlate with the public attribute label, 𝑧𝑝 has a larger dimension
than 𝑦𝑝 and is learned from the original sensor data 𝑥 , hence it can
contain extraneous information apart from information about the
public attribute. Thus, using 𝑦𝑝 in MINE is more efficient than 𝑧𝑝
and yields better disentanglement.

We implement MINE using a neural network parameterized by
𝜇 with four fully connected layers where each layer is followed
by a ReLU activation function. The first layer takes as input the
concatenation of the two random variables and use 400 neurons to
compute the output. The second and third FC layers also use 400
neurons, and the last FC layer outputs a single value estimating
the MI between the two input random variables. We train MINE
together with the auxiliary privacy model. In particular, for every
mini-batch of training data that contains 𝑏 data samples, we first
obtain the private latent representation 𝑧𝑠 by feeding the clean data
input 𝑥0 and the public attribute representation 𝑧𝑝 to the privacy
auxiliary classifier 𝑝𝜂 (𝑦𝑠 |𝑧𝑝 , 𝑥0), where 𝑧𝑝 is computed using the
pre-trained feature extractor in the surrogate utility model. Next,
MINE is trained to estimate MI between 𝑧𝑠 and 𝑦𝑝 following the
algorithm proposed in [7]. We use Adam optimizer with a learning
rate of 0.0002 to train MINE. Then 𝑧𝑝 is fed into the classification
layer of the auxiliary privacy model to predict the private attribute
label. We regularize the auxiliary privacy model by using MINE to
estimate the MI between 𝑧𝑠 and 𝑦𝑝 :

L𝜂 = LCE +𝑤3 ·MI(𝑧𝑠 , 𝑦𝑝 ), (18)

where LCE is the cross-entropy loss for predicting the private at-
tribute label, and𝑤3 is a hyperparameter that controls the strength
of the regularization term. Note that although𝑤3 can also serve as
a tunable knob to navigate the privacy-utility trade-off, we argue
that it is more intuitive and preferable to only tune𝑤1 and𝑤2 with
a fixed𝑤3. We empirically select a value of𝑤3 that encourages dis-
entangling the public and private attributes to the maximum extent
while preserving high accuracy of the auxiliary privacy model.

4.3.3 Improving Effectiveness of Negative Conditions using Universal
Guidance. The negative conditioning is achieved via classifier guid-
ance to take advantage of its ability to guide the diffusion model
during the sampling stage, where the input of the auxiliary privacy
model is the data perturbed with noise that is sampled at a ran-
dom timestep 𝑡 . This requires 𝑝𝜂 to achieve high accuracy on noisy
input 𝑥𝑡 . However, we found that training 𝑝𝜂 on the noisy data
causes convergence issues and reduces the effectiveness of nega-
tive conditioning. Therefore, we train 𝑝𝜂 (𝑦𝑠 |𝑦𝑝 , 𝑥𝑡 ) on clean sensor
data and follow the idea of universal guidance [6] to substitute the
noisy input 𝑥𝑡 with the predicted clean data 𝑥0 during sampling.
Specifically, the denoised data 𝑥𝑡−1 is sampled from 𝑞(𝑥𝑡−1 |𝑥𝑡 , 𝑥0)
in DDIM, where 𝑥0 =

𝑥𝑡−
√

1−𝛼𝑡𝜖 (𝑥𝑡 )√
𝛼𝑡

is the predicted denoised data
that substitutes the unknown 𝑥0, as shown in (9). Since the diffusion
model is conditioned on the public attribute in our work, we apply
the forward universal guidance to a conditional diffusion model by
substituting 𝑥𝑡 with:

𝑥0 =
𝑥𝑡 −

√
1 − 𝛼𝑡𝜖𝜃 (𝑥𝑡 , 𝑡, 𝑧𝑝 )√

𝛼𝑡

=
𝑥𝑡 −

√
1 − 𝛼𝑡

(
(1 +𝑤1)𝜖𝜃 (𝑥𝑡 , 𝑡, 𝑧𝑝 ) −𝑤1𝜖𝜃 (𝑥𝑡 , 𝑡)

)
√
𝛼𝑡

.

(19)

Finally, we update our noise-prediction network as follows:
𝜖𝜃 (𝑥𝑡 , 𝑡, 𝑧𝑝 , 𝑦𝑠 ) = (1 +𝑤1)𝜖𝜃 (𝑥𝑡 , 𝑡, 𝑧𝑝 ) −𝑤1𝜖𝜃 (𝑥𝑡 , 𝑡)

+𝑤2
√

1 − 𝑎𝑡∇𝑥𝑡 log𝑝𝜂 (𝑦𝑠 |𝑧𝑝 , 𝑥0) .
(20)

4.4 Extension to Multiple Private Attributes and
Multiple Public Attributes

We now explain how multiple private attributes can be protected
simultaneously via a straightforward extension of the proposed
negative conditioning technique. Consider a total of 𝐾 private
attributes denoted as 𝑦𝑠1 , 𝑦𝑠2 , · · ·, 𝑦𝑠𝐾 . For each private attribute
𝑘 ∈ [1, 2, · · ·, 𝐾], we adopt an auxiliary privacy model parameter-
ized by 𝜂𝑘 . Our goal is to compute 𝑝𝜃,𝜙,𝜂1,· · ·,𝜂𝐾 (𝑥𝑡 |𝑦𝑝 , 𝑦𝑠1 , · · ·, 𝑦𝑠𝐾 ).
For the ease of exposition, we derive the noise predictor by as-
suming that the 𝐾 private attributes are conditionally independent,
given 𝑥𝑡 and the public attribute 𝑦𝑝 .2 Similar to (14), we can write:

𝑝𝜃,𝜙,𝜂1,· · ·,𝜂𝐾 (𝑥𝑡 |𝑦𝑝 , 𝑦𝑠1 , · · ·, 𝑦𝑠𝐾 )∝

𝑝𝜃,𝜙,𝜂1,· · ·,𝜂𝐾 (𝑥𝑡 , 𝑦𝑝 , 𝑦𝑠1 , · · ·, 𝑦𝑠𝐾 )∝
𝑝𝜃 (𝑥𝑡 )𝑝𝜙 (𝑦𝑝 |𝑥𝑡 )∏𝐾
𝑘=1 𝑝𝜂𝑘 (𝑦𝑠𝑘 |𝑦𝑝 , 𝑥𝑡 )

.
(21)

Taking the gradient of the logarithm of (21) w.r.t. 𝑥 yields:

∇𝑥𝑡 log 𝑝𝜃 (𝑥𝑡 )+∇𝑥𝑡 log 𝑝𝜙 (𝑦𝑝 |𝑥𝑡 )−
𝐾∑︁
𝑘=1

∇𝑥𝑡 log𝑝𝜂𝑘 (𝑦𝑠𝑘 |𝑦𝑝 , 𝑥𝑡 )

=− 𝜖𝜃 (𝑥𝑡 )√
1−𝑎𝑡

+∇𝑥𝑡 log𝑝𝜙 (𝑦𝑝 |𝑥𝑡 )−
𝐾∑︁
𝑘=1

∇𝑥𝑡 log𝑝𝜂𝑘 (𝑦𝑠𝑘 |𝑦𝑝 , 𝑥𝑡 ) . (22)

2This assumption simplifies the optimization problem and the dependency between
private attributes is expected to result in stronger privacy protection at the cost of
slightly reducing utility. That being said, one can disentangle the private attributes
first before performing negative conditioning to improve the privacy-utility trade-off.
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The rest of the derivation follows (16) and (17). We can write the
noise predictor 𝜖 as:
𝜖𝜃 (𝑥𝑡 , 𝑡, 𝑧𝑝 , 𝑦𝑠1 , · · ·, 𝑦𝑠𝐾 )=(1 +𝑤1)𝜖𝜃 (𝑥𝑡 , 𝑡, 𝑧𝑝 )−𝑤1𝜖𝜃 (𝑥𝑡 , 𝑡)

+
𝐾∑︁
𝑘=1

𝑤𝑘+1
√

1 − 𝑎𝑡∇𝑥𝑡 log𝑝𝜂 (𝑦𝑠𝑘 |𝑧𝑝 , 𝑥𝑡 ),
(23)

where𝑤𝑘+1 is a hyperparameter that controls the strength of nega-
tive conditioning for private attribute 𝑦𝑠𝑘 . The mutual information-
based regularization technique and the improved classifier guidance
based on forward universal guidance can also be trivially applied
to train each auxiliary privacy model.

It is also possible to support desired inferences about multi-
ple public attributes. We use multi-task learning as an example
to demonstrate the feasibility of conditioning 𝐾 public attributes,
denoted 𝑦𝑝1 , · · · , 𝑦𝑝𝐾 . In particular, we first modify the surrogate
utility model 𝑝𝜙 to predict multiple public attributes simultaneously.
Specifically, the latent representation, 𝑧𝑝 , extracted by the feature
extractor of the surrogate utility model is used to separately predict
𝑦𝑝1 , · · · , 𝑦𝑝𝐾 via 𝐾 classification heads. Each classification head
uses the cross-entropy (CE) loss to measure the error of predicting
its corresponding public attribute. The 𝐾 CE loss terms are then
summed to obtain the total classification loss of the surrogate utility
model, which is trained by using the Adam optimizer, following the
same approach introduced in Section 4.2. We also adapt training
of the auxiliary privacy model to disentangle the private attribute
from the public attributes. To this end, for simplicity, we consider
the case of protecting one private attribute 𝑦𝑠 and employ 𝐾 MINE
models, each estimating the mutual information between the latent
representation of the private attribute 𝑧𝑠 and the label of a public
attribute. This encourages the auxiliary privacy model to learn pri-
vate attribute information that is weakly correlated with the public
attributes. Hence, we can modify the loss function of the auxiliary
privacy model in (18) as:

L𝜂 = LCE +
𝐾∑︁
𝑘=1

𝑤𝑝𝑘 ·MI(𝑧𝑠 , 𝑦𝑝𝑘 ), (24)

where𝑤𝑝𝑘 controls the strength of the MI-based regularization for
disentangling private attribute with the public attribute 𝑦𝑝𝑘 . In Ap-
pendix B, we analyze the scalability of PrivDiffuser by conditioning
on up to four attributes (3:1 and 1:3 for public:private attributes).

5 Evaluation
5.1 Baselines
ObscureNet [17]. ObscureNet is a GAN-based data obfuscation
model that utilizes a CVAE jointly optimized with a discrimina-
tor in an adversarial fashion. The discriminator encourages the
encoder of CVAE to learn latent representations that do not contain
sensitive information. By conditioning the decoder of CVAE with
a dummy private attribute label, this obfuscation model generates
sensor data that contain misleading private information to reduce
the privacy loss while maintaining the utility. We use ObscureNet
as a representative GAN-based obfuscation model because its imple-
mentation is publicly available, unlike [32] and some other related
work, and it is shown to outperform strong GAN-based baselines in
terms of the privacy-utility trade-off [17]. Note that, in ObscureNet,

a dedicated obfuscation model is trained per public attribute class,
whereas our approach trains a single diffusion model for all public
and private attributes. Thus it has a higher training cost than PrivD-
iffuser. ObscureNet is trained and evaluated using the code released
by the authors on GitHub. We use the randomized anonymization
approach, as it is robust to the re-identification attack.

Diffusion. Our next baseline is an obfuscation model based on a de-
noising diffusion model with the same architecture as PrivDiffuser.
We use the same conditioning approach for the public attribute, but
we do not apply the negative condition for the private attribute(s).
This baseline highlights the white-listing capability of diffusion-
based obfuscation models that only use the positive condition for
the public attribute.

Diffusion with Negation. We implement this baseline on top of the
Diffusion baseline by adding the proposed negative conditioning
technique to enforce the absence of information about the private
attribute in the obfuscated data. However, we do not apply the
proposed mutual information-based regularization to alleviate the
entanglement between public and private attributes. This baseline is
used to establish two things: First, the effectiveness of the negative
conditioning technique through comparisonwith theDiffusion base-
line; Second, the role of MI-based regularization in disentangling
public and private attributes through comparison with PrivDiffuser.

5.2 Datasets
Our evaluation is conducted on three publicly available datasets
including different modalities that are commonly used for human
activity recognition (HAR). The first two datasets use IMU sensors,
which are increasingly embedded in mobile and IoT devices, and
the third one uses WiFi signals.

MobiAct [8]. It is an activity recognition dataset collected using
the accelerometer, gyroscope, and orientation sensor in a Samsung
smartphone [8]. It contains data from 66 participants performing
12 different daily activities. For a fair comparison with our first
baseline [17] that used a subset of this dataset, we use only the
accelerometer and gyroscope data to detect these 4 activities: walk-
ing, standing, jogging, and walking up the stairs. This yields 6
channels from the 3-axis accelerometer and the 3-axis gyroscope.
We select the same 36 participants (20 male and 16 female partici-
pants) used in that baseline. We preprocess the data by performing
standardization and segmentation using a sliding window of size
128 samples and a stride length of 10 samples. We split the data
with an 8:2 train-test ratio. The public attribute that participants
wish to infer from their sensor data is activity. We consider two
private attributes that were recorded for each participant: gender
and weight. Gender is a binary attribute in this dataset, and weight
is considered as a ternary attribute comprising Group 0 (≤ 70kg),
Group 1 (70-90kg), and Group 2 (≥ 90kg). This models individuals’
weight as a categorical attribute containing three groups of nearly
the same size.

MotionSense [27]. It is collected using the accelerometer and gyro-
scope sensor of an iPhone 6s, carried by 24 participants (14 male and
10 female participants). For a fair comparison with our first base-
line [17], we consider the following 4 activities from the 6 activities
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recorded in the dataset: walking up and down the stairs, walking,
and jogging. Each activity is repeated in 15 trials. We use the first 9
trials for training and the remaining 6 trials for testing, similar to
the baseline. The public attribute is activity and the private attribute
is the user’s gender, a binary attribute in this dataset. Magnitude
readings from the accelerometer and gyroscope are aggregated
over their respective 3 axes, resulting in 2 channels, one for each
sensor. The aggregated sensor data is then segmented using the
same technique used for the MobiAct dataset.

WiFi-HAR [5]. It uses radio frequency (RF), in particular WiFi chan-
nel state information (CSI), for activity recognition. The WiFi-HAR
dataset contains 90 CSI channels collected from 3 transceiver pairs
(1 transmitter and 3 receivers), with each transceiver pair gener-
ating 30 channels. We follow [40] and use the data collected in
a line-of-sight environment, where 10 participants performed 12
activities. Each activity is repeated 20 times. We select 4 activities,
namely standing, sitting, lying down, and turning around. This
constitutes our public attribute. The participants’ weight is chosen
as the private attribute and categorized into two groups: higher and
lower than 80kg. To preprocess the data, the magnitude of the CSI
readings for each channel is computed and standardized. We then
apply a sliding window of 80 samples with a stride length of 40
samples to segment the data. The segments are randomly shuffled
and divided into training and test sets with a split ratio of 8:2.

5.3 Evaluation Metrics
5.3.1 Privacy Loss. Our first evaluation metric is the success rate
of AIA, which signifies the loss of private information due to shar-
ing data with an HBC service provider. To measure the success
rate of AIA, we use the classification accuracy of a powerful in-
trusive inference model predicting the private attribute given the
obfuscated data–a standard practice in the data obfuscation liter-
ature [9, 17, 22, 23, 26, 27, 32, 40]. This model is a convolutional
neural network (CNN) that has 4 convolutional layers, followed
by 3 fully connected layers. We note that an adversary can use
any arbitrary model. In this work, we adopt this CNN architec-
ture as it simulates a powerful attacker by using a more advanced
architecture compared to the auxiliary privacy model and surro-
gate utility model, and it achieves high inference accuracy on raw
sensor data. We train this model on raw sensor data, and use its
classification accuracy as a measure of privacy loss. The training
and test sets are resampled and different from the ones used to
train PrivDiffuser. Ideally, the classification accuracy on obfuscated
data should be close to the level of random guessing (e.g., 50% for
binary private attribute) instead of 0%. This is because the latter
is prone to a re-identification attack, where the adversary learns
the quasi-deterministic mapping and recovers the original private
attribute label [17].

5.3.2 Data Utility. We use the classification accuracy of a powerful
desired inference model as a measure of data utility. This inference
model takes as input the obfuscated sensor data and predicts the
public attribute label. It is a more sophisticated model than the sur-
rogate utility model used in the obfuscation pipeline, showing that
data obfuscated using a simpler model can maintain high utility. We
construct the desired inference model using the same architecture

as the intrusive inference model and train it on the raw sensor data.
Overall, the obfuscation model should not decrease the utility of
data, meaning that the desired inference accuracy should remain
the same as the case that raw sensor data is used.

5.4 Implementation Details
PrivDiffuser is trained on a GPU server and deployed on edge/IoT
devices to perform on-device data obfuscation. We implement the
surrogate utility model and auxiliary privacy model using a simple
CNN that contains 2 convolutional layers followed by 4 FC layers
as introduced in Section 4.2. The third FC layer outputs the latent
feature representations of size 60, and the fourth FC layer is the
classification layer. We use ReLU as the activation function. For
MobiAct, MotionSense, and WiFi-HAR datasets, we set the num-
ber of output channels of the (first, second) convolutional layers
to (8, 16), (64, 128), and (16, 32), respectively. Both convolutional
layers use a kernel size of 2. We implement the noise prediction
network, 𝜖𝜃 , based on an open-source UNet architecture released by
OpenAI [1]. We use a linear scheduler [18] that starts from 0.0001
and ends at 0.02 with 𝑇=1000. A total of 50 steps are used in the
sampling stage to generate obfuscated data. We use a batch size of
128 for MobiAct and MotionSense, and a smaller batch size of 8 for
WiFi-HAR for GPU memory efficiency. In this setting, obfuscating
one batch containing 128 sensor data segments from the MobiAct
dataset takes approximately 11 seconds on one NVIDIA RTX 2080
Ti GPU, that is approximately 86 ms for obfuscating one sensor data
segment (see Appendix B for details). We find that there is a linear
relationship between the number of steps used in the sampling
stage and the obfuscation time. For MobiAct, we set the number
of model channels used in the UNet to 64, and hyperparameters as
follows:𝑤1=2.5,𝑤2=0.5,𝑤3=8 for gender obfuscation, and𝑤1=3.8,
𝑤2=1.5, and 𝑤3=8 for weight obfuscation. For MotionSense, we
set the number of model channels to 256, 𝑤1=7.8, 𝑤2=0.05, and
𝑤3=8. For WiFi-HAR, we set the number of model channels to 256,
𝑤1=5.8, 𝑤2=0.4, and 𝑤3=4. The values of 𝑤1 and 𝑤2 are chosen
so as to get a near-random guessing level of accuracy from the
intrusive inference model. This makes the diffusion-based models
robust to re-identification attacks [17]. We use the same hyper-
parameters for the two diffusion-based baselines. Note that for
the Diffusion baseline, we set𝑤1=3.8 for both gender and weight
obfuscation in MobiAct, since it does not use the negative con-
ditioning technique. Our implementation is released on GitHub:
https://github.com/sustainable-computing/PrivDiffuser.

6 Case Studies
6.1 Case Study 1: HAR on MobiAct
6.1.1 Protecting Gender. We first evaluate the obfuscation mod-
els on the MobiAct dataset when the user wishes to protect their
gender. Figure 4a compares the intrusive inference accuracy ob-
tained on the data obfuscated by each model. We consider five
independent runs for each experiment, and plot the average and
standard deviation (error bars) of accuracy over these runs. With-
out data obfuscation, the adversary can easily predict the user’s
gender from the raw sensor data, attaining an average intrusive in-
ference accuracy (F1 score) of 97.53% (97.50%). The data obfuscated
by ObscureNet yields an average intrusive inference accuracy (F1
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Activity Walking Standing Jogging Upstairs Overall (Accuracy/F1-score)
Private Attribute Gender Weight Gender Weight Gender Weight Gender Weight Gender Weight
Raw Data 98.10% 99.58% 99.74% 95.14% 98.80% / 91.85%
ObscureNet 94.82% 94.96% 99.60% 99.08% 98.14% 97.78% 93.00% 92.04% 97.21% / 84.99% 97.02% / 84.29%
Diffusion 96.84% 99.19% 99.40% 87.86% 97.96% / 87.44%
Diffusion with Negation 95.74% 95.08% 98.30% 94.62% 99.64% 99.42% 89.72% 83.46% 97.07% / 84.54% 94.93% / 79.53%
PrivDiffuser 95.96% 96.12% 98.78% 97.92% 99.62% 99.46% 90.80% 86.76% 97.40% / 85.49% 97.03% / 84.17%

Table 1: Average activity recognition accuracy of obfuscation models on the MobiAct dataset. Note that the Diffusion baseline
does not assume the knowledge of the private attribute, hence the HAR accuracy for gender/weight obfuscation is the same.

score) of 52.04% (52.04%), which is close to random guessing, i.e.
50%. The Diffusion baseline shows the worst privacy loss with an
average intrusive inference accuracy (F1 score) of 67.26% (66.33%).
This suggests that without using the private attribute for nega-
tive conditioning, this baseline can provide only limited protection
for the gender attribute due to the white-listing characteristic of
diffusion models. By introducing the negative conditioning, the
Diffusion with Negation baseline drastically reduces the privacy
loss and achieves an average intrusive inference accuracy (F1 score)
of 49.72% (48.97%). Yet the improvement in privacy loss comes at
the expense of reducing data utility (as discussed below), due to
the entanglement of public and private attributes. PrivDiffuser inte-
grates negative conditioning along with mutual information-based
regularization to achieve an average intrusive inference accuracy
(F1 score) of 51.43% (50.49%), slightly underperforming Diffusion
with Negation. But this accuracy is still close to random guessing
and better than ObscureNet. We attribute this to the different levels
of entanglement between each gender class and the public attribute,
reducing the effect of negative conditioning on the private attribute
class that has a stronger correlation with the public attribute.

Next, we study the impact of data obfuscation on data utility
when the user wishes to protect their gender. The result is reported
in Table 1. We find that all obfuscation models maintain relatively
high data utility. Notably, the Diffusion with Negation baseline
results in the lowest utility despite achieving the lowest privacy
loss, showing an average activity recognition accuracy (F1 score) of
97.07% (84.54%). We attribute this to using the negative condition
to remove information about the private attribute without disen-
tangling the public and private attributes. ObscureNet yields an
average HAR accuracy (F1 score) of 97.21% (84.99%), outperforming
the Diffusion with Negation baseline. The Diffusion baseline shows
the highest HAR accuracy (F1 score) of 97.96% (87.44%), under-
scoring the outstanding capability of a conditional diffusion model
to produce realistic data. However, it fails to offer strong privacy
protection as explained earlier. PrivDiffuser yields the second-best
data utility, with an average HAR accuracy (F1 score) of 97.40%
(85.49%). We conclude that PrivDiffuser yields the best privacy-
utility trade-off in the gender obfuscation task, outperforming the
state-of-the-art GAN-based obfuscation baseline.

6.1.2 Protecting Weight. We now evaluate the obfuscation models
when users want to protect their weight (a ternary attribute) on
MobiAct. Figure 4b shows the result. ObscureNet achieves a decent
average intrusive inference accuracy (F1 score) of 38.88% (35.15%).
Similar to the gender obfuscation case, the Diffusion baseline of-
fers the worst privacy protection with an average weight inference
accuracy (F1 score) of 55.86% (51.54%). However, this result is still
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Figure 4: Intrusive inference accuracy on MobiAct dataset
for gender and weight obfuscation
Model Downstairs Upstairs Walking Jogging Overall (Accu./F1)
Raw Data 96.60% 94.40% 99.00% 97.40% 97.47% / 96.59%
ObscureNet 79.82% 95.28% 98.58% 97.22% 94.96% / 93.05%
Diffusion 96.10% 96.08% 95.68% 98.02% 96.28% / 95.64%
Diffusion with Negation 96.06% 96.34% 95.64% 97.94% 96.28% / 95.64%
PrivDiffuser 96.14% 96.44% 95.64% 98.00% 96.32% / 95.69%

Table 2: Average activity recognition accuracy on Motion-
Sense for gender obfuscation

encouraging as it reduces the intrusive inference accuracy by 35.88%
compared to raw sensor data, without requiring knowledge of the
private attribute. Both the Diffusion with Negation baseline and
PrivDiffuser outperform ObscureNet in terms of privacy loss, show-
ing an intrusive inference accuracy (F1 score) of 36.61% (32.39%)
and 35.78% (31.53%), respectively. PrivDiffuser offers the best pri-
vacy protection since the weight inference accuracy is closest to
the random guessing level, i.e. 33.33%.

Finally, we look at data utility in the weight obfuscation task. As
Table 1 shows, the Diffusion with Negation baseline achieves the
lowest HAR accuracy (94.93%) because of the application of nega-
tive conditioning without disentangling the attributes. ObscureNet
and PrivDiffuser show nearly the same performance, achieving an
average HAR accuracy (F1 score) of 97.02% (84.29%) and 97.03%
(84.17%), respectively. Specifically, the F1 score of ObscureNet is
slightly higher, due to its higher accuracy in the walking upstairs
activity. This is because ObscureNet trains a dedicated model for
each activity, allowing each model to focus on a simpler task, which
offers a slight advantage in maintaining data utility compared to
PrivDiffuser. Regardless, PrivDiffuser outperforms ObscureNet in
terms of privacy loss by 3.10% (3.62%) w.r.t. the intrusive inference
accuracy (F1 score). Overall, PrivDiffuser yields a better trade-off
between privacy and utility. In Appendix B, we further extend our
evaluation to protecting multiple user attributes.

6.2 Case Study 2: HAR on MotionSense
We then evaluate the obfuscation models on the MotionSense
dataset for gender obfuscation and report the intrusive inference
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Figure 5: Intrusive inference
accuracy on MotionSense for
gender obfuscation
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Figure 6: Intrusive inference
accuracy on WiFi-HAR for
weight obfuscation

accuracy in Figure 5. Without applying data obfuscation, the intru-
sive inference model achieves a high average accuracy (F1 score) of
93.52% (93.26%) in predicting the gender attribute. Data obfuscated
by ObscureNet reduces the intrusive inference accuracy (F1 score)
to 53.46% (52.61%). We find that the Diffusion baseline offers sur-
prisingly good privacy-preserving performance and outperforms
ObscureNet by only conditioning on the public attribute, show-
ing an average intrusive inference accuracy (F1 score) of 51.34%
(50.18%). Although the Diffusion baseline does not consistently out-
perform ObscureNet on all datasets, the white-listing characteristic
could still offer promising privacy protection when the public and
private attributes have relatively weak entanglement. By incorpo-
rating the negative condition, the Diffusion with Negation baseline
further reduces the intrusive inference accuracy (F1 score) to 49.42%
(48.31%). With mutual information-based regularization, PrivDif-
fuser yields an intrusive inference accuracy (F1 score) of 49.96%
(49.00%). For MotionSense, all diffusion-based models outperform
the GAN-based baseline in terms of privacy loss.

We report the HAR accuracy when obfuscating gender on Mo-
tionSense in Table 2. In particular, ObscureNet yields good data
utility, with an average HAR accuracy of 94.96% (93.05%), but under-
performs all diffusion-based obfuscation models. The Diffusion and
Diffusion with Negation baselines achieve the HAR accuracy (F1
sore) of 96.28% (95.64%) on average. PrivDiffuser achieves the high-
est average HAR accuracy (F1 score) of 96.32% (95.69%). In summary,
for gender obfuscation in the MotionSense dataset, PrivDiffuser and
the two diffusion-based baseline models outperform the GAN-based
baseline in terms of privacy loss and data utility.
6.3 Case Study 3: HAR on WiFi-HAR
Lastly, we extend our evaluation study to obfuscate data collected
using RF sensors on the WiFi-HAR dataset. Figure 6 shows the
intrusive inference accuracy on the WiFi-HAR dataset when obfus-
cating the binary weight attribute. ObscureNet achieves an average
weight inference accuracy (F1 score) of 51.43% (51.39%). Although
the Diffusion baseline achieves slightly higher (∼1.35%) weight in-
ference accuracy than ObscureNet, it still offers decent protection
for the weight attribute, highlighting its white-listing characteristic.
The Diffusion with Negation baseline offers stronger privacy pro-
tection thanks to the negative conditioning, showing an average
intrusive inference accuracy (F1 score) of 47.67% (47.62%). PrivD-
iffuser yields an average intrusive inference accuracy (F1 score)
of 49.21% (49.15%), which is only 0.79% away from the ideal 50%
random guessing accuracy.

We evaluate the activity recognition accuracy on the obfuscated
data and present the results in Table 3. ObscureNet yields the lowest

Model Standing Turning Lying Sitting Overall (Accu./F1)
Raw Data 95.77% 97.73% 99.40% 98.58% 97.88% / 97.88%
ObscureNet 86.82% 72.46% 96.68% 89.44% 86.37% / 86.17%
Diffusion 85.94% 96.64% 92.14% 78.38% 88.30% / 88.24%
Diffusion with Negation 85.76% 96.56% 91.78% 78.46% 88.17% / 88.11%
PrivDiffuser 85.76% 96.70% 91.56% 78.62% 88.18% / 88.12%

Table 3: Average activity recognition accuracy on WiFi-HAR
dataset for weight obfuscation

overall HAR accuracy (F1 score) of 86.37% (86.17%). All diffusion-
based obfuscation models yield nearly the same level of utility,
outperforming ObscureNet. Specifically, the Diffusion with Nega-
tion baseline achieves a lower HAR accuracy (F1 score) of 88.17%
(88.11%). PrivDiffuser outperforms ObscureNet w.r.t. the average
HAR accuracy (F1 score) by 1.81% (1.95%).

In summary, evaluation on three datasets indicates that PrivDif-
fuser consistently yields a superior privacy-utility trade-off, regard-
less of the sensing modality and user-specified private attribute.
6.4 Navigating Privacy-Utility Trade-offs
We now turn our attention to how users with diverse privacy needs
can navigate the privacy-utility trade-off. We use the MotionSense
dataset as an example and consider activity as the public attribute
and gender as the private attribute. To control the data utility and
privacy, we adjust the hyperparameters 𝑤1 and 𝑤2 introduced
in (17), respectively. Concretely, we assign one of the following
four values to 𝑤2: 0, 0.1, 0.2, and 0.3, where 𝑤2 = 0 corresponds
to the Diffusion baseline. Then, for each 𝑤2 value, we assign 9
different values from {1, · · ·, 9} to 𝑤1. Note that a higher 𝑤1 im-
poses stronger guidance on the positive condition (public attribute)
which is expected to improve data utility. Similarly, a higher 𝑤2
imposes stronger guidance on the negative condition (private at-
tribute), which is expected to improve privacy protection. We study
the effect of different values of𝑤1 and𝑤2 on the same pre-trained
obfuscation model, meaning that these values are updated at the
sampling stage to adjust the privacy-utility trade-off offered by
PrivDiffuser. Thus, retraining the diffusion model, the surrogate
utility model, and the auxiliary privacy model would not be neces-
sary. This is the main advantage of the proposed guidance approaches,
which sets PrivDiffuser apart from GAN-based obfuscation models.

We illustrate the obtained trade-off curves in Figure 7. The y-
axis shows the activity recognition accuracy (a measure of utility),
and the x-axis shows the gender inference accuracy (a measure of
privacy loss). A red star is drawn to mark the ideal trade-off, which
is defined as the HAR accuracy obtained on the raw sensor data
(97.47%) and the perfect random guessing accuracy of 50% for the
intrusive inference that involves the binary gender attribute. For a
fixed value of𝑤2, we find that increasing the value of𝑤1 substan-
tially enhances the strength of the positive condition and improves
data utility when𝑤1 is relatively small (≤5). However, as𝑤1 further
increases, the control over the positive condition becomes insignif-
icant and can counteract the effect of the negative condition, i.e.,
causing an increase in the intrusive inference accuracy when 𝑤2
is fixed. We attribute this to the fact that the latent representation
of the public attribute 𝑧𝑝 is extracted without applying informa-
tion disentanglement techniques, hence a stronger guidance on the
public attribute could add more sensitive information to 𝑧𝑝 due to
the entanglement problem. On the other hand, for a fixed value of
𝑤1, increasing 𝑤2 can effectively control the intrusive inference
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Figure 7: Privacy-utility trade-off curves obtained by tuning
the hyperparameters𝑤1 and𝑤2 of PrivDiffuser post training
for gender obfuscation on MotionSense. Note that both axes
are exaggerated. The activity recognition accuracy increases
with𝑤1 in all curves, we annotate only two curves for brevity.

accuracy with very limited impact on data utility, thanks to the
mutual information-based regularization that alleviates the entan-
glement of the public attribute with the latent representation of
the private attribute 𝑧𝑠 . In practice, one can determine the values
of 𝑤1 and 𝑤2 that yield a reasonable privacy-utility trade-off via
sequential grid search, where𝑤2 can be first set to a default value
(e.g., 0) to search for𝑤1 that achieves the best data utility, then𝑤2
can be tuned when𝑤1 is fixed at this value. The key takeaway is
that we can effectively balance the effect of positive and negative
conditions post-training by tuning the two knobs𝑤1 and𝑤2. This
enables users to navigate the privacy-utility trade-off according to
their privacy needs, which may even change over time.

6.5 Protecting Multiple Private Attributes
We use the MobiAct dataset which contains more user attributes to
evaluate the effectiveness of our approach for protecting multiple
private attributes through negative conditioning. We consider user
activity as the public attribute, and first evaluate PrivDiffuser when
protecting two private attributes, namely gender and weight. We
then extend our evaluation to protect three private attributes, with
user ID being the third one. We re-use the pre-trained surrogate
utility model, the diffusion model conditioned on the public at-
tribute, and the auxiliary privacy model trained to predict gender
as introduced in Section 6.1, and only incorporate a newly trained
auxiliary privacy model that predicts the weight attribute for pro-
tecting two private attributes. We also train the third auxiliary
privacy model that predicts the user ID of the 36 users included
in the dataset. The hyperparameters are set empirically as follows:
𝑤1=2.2, 𝑤2=0.3, 𝑤3=0.6 when protecting two private attributes,
and 𝑤1=2.8, 𝑤2=0.5, 𝑤3=1.0, 𝑤4=1.5 when protecting three pri-
vate attributes, with𝑤2 ,𝑤3 and𝑤4 controlling the importance of
excluding information about gender, weight, and user ID in the
obfuscated data, respectively. We follow the same experimental
setup described in Section 5 and repeat the experiment 5 times to
report the average HAR accuracy and intrusive inference accuracy.

When protecting two private attributes, the data obfuscated by
PrivDiffuser achieves average HAR accuracy (F1 score) of 95.64%
(81.19%). This shows that PrivDiffuser can protect multiple private

attributes with little impact on utility. The average intrusive in-
ference accuracy (F1 score) on the private attribute gender and
weight group is respectively 49.67% (48.92%) and 35.30% (30.90%),
deviating from the random guessing level by only 0.33% and 1.97%,
respectively. Compared to the privacy protection offered for the
weight attribute due to the white-listing characteristic of diffusion
models which is discussed in Appendix A (i.e. when gender is used
as the only private attribute), protecting two attributes using neg-
ative conditioning further reduces the intrusive weight inference
accuracy by 14.14% with very limited impact on utility.

When using PrivDiffuser to protect three private attributes, the
obfuscated data achieves average HAR accuracy (F1 score) of 93.77%
(78.40%), a slight decrease of 1.87% (2.79%) compared to the case of
protecting two private attributes. The average intrusive inference
accuracy (F1 score) on gender, weight, and user ID is 50.35% (49.27%),
36.04% (31.05%), and 15.62% (15.57%), respectively. For the first two
private attributes, the accuracy is close to the random guessing level
(50% and 33.33% respectively). For the user ID attribute, the ideal
random guessing accuracy is 2.78% given that there are 36 classes.
For this attribute, although the intrusive inference accuracy on the
obfuscated data is higher than random guessing, PrivDiffuser still
reduces the intrusive inference accuracy by 79.50% compared to raw
data. More importantly, protecting the additional user ID attribute
does not worsen the privacy loss for the other two private attributes.
This result confirms that PrivDiffuser can be easily extended to
protect multiple private attributes without re-training the surrogate
utility model or the diffusion model.

6.6 Supporting Multiple Downstream Tasks by
Conditioning on Multiple Public Attributes

We also use the MobiAct dataset to evaluate the effectiveness of
conditioning up to three public attributes. First, for the case of
conditioning two public attributes, we consider user activity and
gender as the public attributes, and weight group as the private
attribute. For conditioning three public attributes, we use activity,
gender, and weight as the public attributes, and user ID as the pri-
vate attribute. The hyperparameters are set empirically as follows:
𝑤1=2.2,𝑤2=2.8,𝑤𝑝1=1.6,𝑤𝑝2=1.6 for two public attributes;𝑤1=5.8,
𝑤2=0.5,𝑤𝑝1=0.4,𝑤𝑝2=0.4,𝑤𝑝3=0.4 for three public attributes. The
remaining experimental setup is identical to the setup described in
Section 5. When considering gender and weight as public attributes,
we reuse the intrusive inference models trained for evaluation in
Section 5.3 as the desired inference models. We report the desired
inference and intrusive inference accuracy averaged over 5 runs.

We first evaluate conditioning two public attributes. Considering
utility, we find that data obfuscated by PrivDiffuser achieves 90.90%
(72.36%) average accuracy (F1 score) for activity recognition and
91.36% (91.30%) average accuracy (F1 score) for gender recognition.
Compared to performing inferences directly on raw sensor data, the
HAR accuracy and gender recognition accuracy decreased by 7.90%
and 6.17%, respectively, which is the cost of protecting the private
attribute. Next, we examine the privacy-preserving performance
of PrivDiffuser for weight obfuscation when conditioned on two
public attributes. The obfuscated data yields an average intrusive
inference accuracy of 46.87% on the ternary weight attribute, reduc-
ing the intrusive inference accuracy by 44.87% compared to when
raw data is released. Recall that in Section 6.1, when PrivDiffuser

12



PrivDiffuser: Privacy-Guided Diffusion Model for Data Obfuscation in Sensor Networks Proceedings on Privacy Enhancing Technologies YYYY(X)

was conditioned on one public attribute (activity) and weight was
the private attribute, PrivDiffuser achieved an average intrusive
inference accuracy of 35.78%. Thus, conditioning on a second public
attribute causes an increase in intrusive inference accuracy due to
the stronger entanglement between weight and gender.

Finally, we consider three public attributes. As for utility, the
obfuscated data yields average desired inference accuracy (F1 score)
of 92.14% (67.56%), 92.74% (92.61%), and 84.26% (82.56%) for activity,
gender, and weight group, respectively. Comparing to the previous
case of conditioning on two public attributes, we find that the
desired inference accuracy for activity and gender slightly improves
when adding a third public attribute (weight). We believe that this
is because the third public attribute (weight) is entangled with
the other two public attributes, causing more information to be
included about them in the obfuscated data when PrivDiffuser is
conditioned on all three public attributes. As for privacy protection,
the obfuscated data yields average intrusive inference accuracy
(F1 score) of 12.39% (10.91%) for the user ID attribute, a 82.73%
(84.21%) decrease compared to the raw data. This result confirms
that PrivDiffuser can effectively protect the weight attribute, while
allowing downstream applications to infermultiple public attributes
with relatively high accuracy.

6.7 Quantifying Privacy and Utility via MI
To further verify PrivDiffuser’s effectiveness in reducing privacy
loss without significantly impacting data utility, we use an infor-
mation theoretic approach. Specifically, we use MINE to estimate
the mutual information between raw data and corresponding pub-
lic/private attribute label, and then between obfuscated data and
corresponding public/private attribute label. We perform data obfus-
cation on the MobiAct dataset as an example, and consider activity
as the public attribute and gender as the private attribute. We fix
𝑤1=5.8 for positive conditioning, and estimate the MI between
the obfuscated data and their public/private attribute labels for
𝑤2∈{0, 0.5, 1.0, 1.5, 2.0, 2.5}, using a separate MINE for each𝑤2.

The estimated MI between raw data and private attribute is 0.683.
We observe that when 𝑤2=0, i.e. without negative conditioning,
the MI between obfuscated data and private attribute decreases to
0.6428. This reduction in privacy loss is attributed to the white-
listing characteristic of PrivDiffuser. As𝑤2 increases, the estimated
MI further decreases to 0.4512 and 0.4696 when 𝑤2=0.5 and 1.0,
respectively. This confirms that PrivDiffuser is effectively reduc-
ing the correlation between the obfuscated data and the private
attribute. As𝑤2 further increases to 1.5, 2.0, and 2.5, we find that
the estimated MI between the obfuscated data and gender increases
to 0.5977, 0.6107, and 0.6226, respectively (see Appendix C). For
these values, the negative conditioning becomes too strong, causing
the obfuscated data to include information about a wrong private
attribute class (e.g. an opposite gender) rather than just obscuring
information about the actual private attribute class. This increases
MI. Turning to utility, the estimated MI between the raw sensor
data and the public attribute is 0.8850. For the obfuscated data, the
MI with the public attribute is maintained at a relatively stable level
for all𝑤2 values, with a slight downward trend from 0.8767 when
𝑤2=0, to 0.8426 when𝑤2=0.5 and 0.8105 when𝑤2=1.0. The MI re-
mains around 0.82 for𝑤2≥1.5. These findings further substantiate
the effectiveness of PrivDiffuser in obfuscating sensor data.

7 Conclusion
PrivDiffuser is the first data obfuscation technique to leverage con-
ditional diffusion models, offering several key advantages over prior
GAN-based approaches. Unlike the image synthesis task, where
only one guidance method is typically used for conditioning, we
address unique challenges in data obfuscation through a deliber-
ate, domain-aware design that incorporates two guidance methods.
Specifically, we applied classifier-free guidance for conditioning
on public attributes and classifier guidance for private attributes,
thereby enabling efficient and flexible adjustment of the privacy-
utility trade-off. Additionally, we jointly optimized MINE and the
auxiliary privacy model loss to alleviate the entanglement of public
and private attributes. Through evaluation on 3 HAR datasets con-
taining data collected by different types of sensors, we corroborated
that PrivDiffuser achieves a better privacy-utility trade-off than the
state-of-the-art GAN-based obfuscation, showing increased data
utility by up to 1.81% and reduced privacy loss by up to 3.42%. We
extended PrivDiffuser to protect multiple private attributes and to
support desired inference tasks. Compared to GAN-based obfusca-
tion models, PrivDiffuser offers a distinct advantage: the possibility
of customizing the privacy-utility trade-off for each user during the
sampling stage without model retraining. Together with its better
obfuscation performance, this makes PrivDiffuser a better fit for
real-world applications where users have diverse privacy needs.

Limitations. Similar to the previous work on sensor data obfusca-
tion [9, 17, 23, 26, 27, 32], we have shown the efficacy of PrivDiffuser
for defending against AIAs based on empirical evaluation, without
providing a formal privacy guarantee. This is due to the inherent
challenges of obscuring sensitive attributes that are not explicitly
disclosed but can be inferred from the shared data, especially in a
continual setting. Differential privacy is not suitable for mitigating
AIAs in the continual setting and under practical adversarial as-
sumptions, and designing an obfuscation technique with theoretical
guarantees remains an open problem in this setting. Another limi-
tation of PrivDiffuser lies in the limited adoption of GPU-equipped
IoT devices, primarily due to their high cost and energy consump-
tion. Additionally, mobile machine learning platforms currently
offer only limited support for backpropagation, which is crucial
for implementing classifier guidance. However, we anticipate that
these challenges will diminish in the near future, as GPUs continue
to become more energy-efficient and affordable, and as on-device
training and fine-tuning gain broader support in mobile platforms.
Lastly, PrivDiffuser requires users to explicitly specify their private
attribute(s) and that at least partial disentanglement of public and
private attributes is possible. If these assumptions do not hold, a
reasonable privacy-utility trade-off may not be achievable.

Future work. There are a few alternative approaches for incor-
porating multiple positive and negative conditions simultaneously.
For instance, it is possible to train a dedicated surrogate utility
model for each public attribute and apply the compositional condi-
tioning techniques proposed in [20, 25]. We aim to explore these
approaches and compare them to the multi-task learning approach
adopted in PrivDiffuser. We plan to dynamically adjust the pro-
gressive diffusion process to adapt PrivDiffuser’s computational
overhead to the given time budget. This is crucial to achieve a sat-
isfactory privacy-utility trade-off on resource-constrained devices.
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A White-listing Characteristic of PrivDiffuser
In this appendix, we revisit thewhite-listing characteristic of diffusion-
based obfuscation models. In diffusion-based obfuscation, infor-
mation about the public attribute is preserved in the obfuscated
data through positive conditioning, hence it is considered a white-
listed attribute. The white-listing characteristic of diffusion-based
obfuscation means that a wide range of attributes, excluding the
white-listed attribute(s), will be protected. This stems from the na-
ture of diffusion models that generate data from noise. Without
explicit guidance based on attributes that are not in the white list,
the generated data would ideally contain information of arbitrary
classes for those attributes, causing an adversary to obtain near-
random guessing accuracy for the respective intrusive inferences.
However, the public attribute can be entangled with other attributes
in practice, so applying the positive condition(s) could reveal infor-
mation about other attributes and increase the privacy loss. In this
case, users can specify the attribute they deem private and employ
the proposed negative conditioning technique to provide strong
privacy protection for that attribute.
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Model Group 0 Group 1 Group 2 Overall

Raw Data 91.96% 89.80% 97.10% 91.74%
ObscureNet 100.00% 0.00% 0.00% 61.41%
Diffusion 58.12% 56.44% 43.84% 55.86%
Diffusion with Negation 54.28% 45.44% 37.48% 48.98%
PrivDiffuser 54.82% 46.00% 37.40% 49.44%

Table 4: Intrusive inference accuracy on the non-private
weight attribute for MobiAct dataset. Obfuscationmodels are
trained to protect the gender attribute.

Figure 2 sheds light on this white-listing characteristic of dif-
fusion models, where not only the user-specified private attribute
(area 2○+ 3○) but also other attributes (area 4○) are protected, as-
suming their entanglement with the public attribute is not strong.
We use the MobiAct dataset as an example to further investigate
this characteristic in two cases:

(1) No private attribute is specified by the user. Thus, all at-
tributes apart from the public attribute, including gender
and weight, might be protected due to the white-listing char-
acteristic of diffusion models. We study this case using the
Diffusion baseline.

(2) Gender is the only private attribute specified by the user. In
this case, the weight attribute might also be protected due
to the white-listing characteristic of diffusion models. We
study this case on all obfuscation models.

In the first case, the white-listing characteristic of the Diffusion
baseline can offer moderate privacy protection while maintaining
high data utility as discussed in the case studies. In the MobiAct
dataset, the Diffusion baseline yields the highest utility, achieving
97.96% HAR accuracy. Meanwhile, the white-listing characteristic
reduces the intrusive inference accuracy on the binary gender and
ternary weight attribute from 97.53% to 67.26% and from 91.74%
to 55.86%, respectively. Similar observations can be made for Mo-
tionSense and WiFi-HAR datasets, where the Diffusion baseline
yields high utility. The overall intrusive inference accuracy on the
binary gender attribute in MotionSense is reduced to 51.34% (from
93.52%), and the intrusive inference accuracy on the binary weight
attribute in WiFi-HAR is reduced to 52.78% (from 99.14%). We find
that for both MotionSense andWiFi-HAR, the Diffusion baseline of-
fers outstanding privacy protection, when compared to the random
guessing level. We attribute this to the underlying data distribution
in these two datasets, where the public and non-public attributes are
relatively less entangled than MobiAct. Overall, the white-listing
characteristic of a basic diffusion-based obfuscation model provides
moderate privacy protection for multiple non-public attributes.

Next, we study the second case. In Table 4, we report the intrusive
inference accuracy on the weight attribute when the obfuscation
models are trained to protect gender onMobiAct. We find that when
the GAN-based ObscureNet baseline is trained to protect gender, the
obfuscated data contains substantial information about the weight
attribute. Specifically, ObscureNet achieves an average weight in-
ference accuracy of 61.41%, which is significantly lower than the
accuracy obtained on the raw data but noticeably higher than other
diffusion-based obfuscation models. Examining the result for each
weight group, it becomes evident that all data segments obfuscated
by ObscureNet are classified as weight group 0, the largest weight

group representing 50% of total users. This shows that the GAN-
based obfuscation model fails to provide meaningful protection
for attributes that were not explicitly black-listed by the user. The
Diffusion baseline, however, provides moderate privacy protection
for the weight attribute, demonstrating better privacy protection
performance than ObscureNet by not only reducing the overall in-
trusive inference accuracy but also lowering the inference accuracy
for all weight groups in a relatively balanced manner. By introduc-
ing the negative condition, the Diffusion with Negation baseline
and PrivDiffuser further reduce the intrusive inference accuracy
to around 49%. This implies that applying the negative condition
of the gender attribute also contributes to the white-listing charac-
teristic and improves the privacy loss on the weight attribute. We
believe this is due to the entanglement between the weight and
gender attribute in the latent space, as removing information about
gender also helps with protecting the weight attribute.

In summary, we have shown that the white-listing characteristic
of diffusion-based obfuscation models could provide privacy pro-
tection for a broad range of attributes other than the user-specified
public and private attributes. Furthermore, the adoption of negative
conditions could enhance this effect when the private attribute is
entangled with unspecified attributes.

B Deployment on IoT Devices: Time and Space
Complexity

In Section 5.4, the MobiAct dataset was used in a case study to mea-
sure the inference time of PrivDiffuser on an NVIDIA RTX 2080 Ti
GPU. We found that obfuscating a batch of 128 data segments takes
about 11 seconds, including the inference time of the auxiliary mod-
els, i.e. approximately 88 ms for obfuscating one data segment. This
is less than the interval between two consecutive data segments,
which is 200 ms assuming a sampling rate of 50Hz and stride length
of 10 samples. Thus, data obfuscation can be performed in real-time
on this GPU.

We now investigate how the computational overhead could scale
with more public or private attributes. The time and space com-
plexity of training PrivDiffuser, which needs to happen once, is
expected to grow linearly with the number of private attributes
because a dedicated auxiliary privacy model with a MINE network
must be trained per private attribute. This is assuming that the
overhead of training each auxiliary privacy model (and each MINE)
is roughly the same. At the sampling stage, the trained networks
must be used for guiding the diffusion model via classifier guid-
ance. Hence, the inference cost is also expected to increase linearly
with the number of private attributes. When it comes to support-
ing multiple public attributes, we have used multi-task learning
to train a single surrogate utility model with multiple classifica-
tion heads to extract latent representations, so the dimension of
the latent representation will not scale with the number of public
attributes. As a result, the increase in time and space complexity is
expected to be rather small with more public attributes, for both
training and sampling. In Table 5, we show the sampling time of
PrivDiffuser when performing data obfuscation on the MobiAct
dataset with up to three public or private attributes, using a sin-
gle RTX 2080 Ti GPU. We measure the sampling time per batch
for at least 50 batches and report the average sampling time per
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# Public-Private Attribute(s) 1-1 1-2 1-3 2-1 3-1
Sampling Time/Batch (ms) 11309.17 11928.23 12506.83 11191.35 11333.39
Sampling Time/Segment (ms) 88.35 93.19 97.71 87.43 88.54

Table 5: Average sampling time for conditioning different
combinations of public and private attributes using a single
RTX 2080 Ti GPU, when performing gender obfuscation on
MobiAct dataset. Each batch contains 128 data segments.

Specification NVIDIA RTX 2080 Ti NVIDIA Jetson Orin NX (16GB)

Architecture Turing (12 nm) Ampere (8 nm)
CUDA Cores 4,352 1,024
Tensor Cores 544 32
Memory 11 GB GDDR6 (352-bit) 16 GB LPDDR5 (128-bit)
AI Performance 228 TOPS (INT8) 157 TOPS (INT8)
Power (TDP) 250 W 10–25 W

Table 6: Specification comparison of the NVIDIA RTX 2080
Ti vs. NVIDIA Jetson Orin NX.

batch and per data segment. The result confirms the above analysis.
Specifically, conditioning on two private attributes increases the
sampling time per data segment by an average of 4.84 ms compared
to conditioning on one private attribute, and adding a third private
attribute further increases the sampling by an average of 4.52 ms;
this is a near-linear increase in the sampling cost. However, when
increasing the number of conditioned public attributes, the average
sampling time per data segment remains at around 88 ms. This
shows that increasing the number of public attributes will have
almost no impact on the sampling cost.

As a point of comparison, ObscureNet, our GAN-based baseline,
supports protecting multiple private attributes by training multiple
discriminator networks, but cannot incorporate multiple public
attributes. The obfuscation process in ObscureNet involves running
each discriminator network. Therefore, the training and sampling
overhead of ObscureNet is expected to grow almost linearly with
the number of conditioned private attributes, assuming that the dis-
criminators have a similar architecture. Since ObscureNet requires
training a dedicated CVAE for each class of the public attribute,
extending it to protect multiple private attributes would result in
substantially higher training costs compared to PrivDiffuser. Addi-
tionally, in ObscureNet and other GAN-based approaches, changing
the definition of the private attribute(s) requires re-training the en-
tire obfuscation model (i.e. CVAE with discriminators).

Given that the classifier guidance technique requires computing
gradients during sampling and existing mobile machine learning
frameworks (e.g., PyTorch Mobile, ExecuTorch) have very limited
support for back-propagation, it is challenging to evaluate the real-
time latency of PrivDiffuser on mobile devices. To get a sense of
the overhead of running PrivDiffuser on GPU-equipped IoT/edge
devices, in Table 6, we compare our GPU (RTX 2080 Ti) with Jetson
Orin NX that is designed for IoT/edge applications and can provide
up to 157 sparse INT8 Tera Operations per Second (TOPS) with
16GB of memory. It can be seen that Jetson has more memory but
handles 30% less operations per second, suggesting that the obfus-
cation latency on GPU-equipped IoT devices will be slightly higher
but in the same ballpark as our GPU. Thus, we posit that running
PrivDiffuser on IoT devices will become feasible as such devices are
increasingly equipped with powerful GPUs. It is worth mentioning
that the computational overhead of PrivDiffuser mainly stems from

the multiple steps of sampling and the relatively large dimension
of sensor data segments. Hence the deployment on mobile/edge
devices can benefit from further optimization, such as reducing
the number of sampling steps or applying few-shot sampling tech-
niques for diffusion models. Furthermore, applying latent diffusion
models can drastically reduce the size of the sampled data. Data
quantization and model pruning are expected to further improve
the running time on resource-constrained devices.

In terms of the model size, among the three datasets, the largest
diffusion model is the one trained for the WiFi-HAR dataset with a
size of 282 MB, and each auxiliary classifier is around 495 MB. The
MobiAct dataset has the smallest diffusion model with a size of 18
MB, with each classifier having a size of around 35MB. Nevertheless,
all three versions of PrivDiffuser would fit in the memory of GPU-
equipped IoT/edge devices such as Jetson Orin NX.

C Estimating Mutual Information Between
Obfuscated Data and Attributes

The figure below compares the mutual information between obfus-
cated data and public/private attributes with the mutual informa-
tion between raw sensor data and these attributes. In each case, the
mutual information is estimated using a MINE network.
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Figure 8: Estimated MI between obfuscated data and pub-
lic/private attribute when performing gender obfuscation on
MobiAct dataset with various𝑤2 values and a fixed𝑤1=5.8.
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