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Abstract—In this demo, we introduce a hands-free hu-
man activity recognition framework leveraging millimeter-wave
(mmWave) sensors. Compared to other existing approaches, our
network protects user privacy and can remodel a human skeleton
performing the activity. Moreover, we show that our network can
be achieved in one architecture, and be further optimized to have
higher accuracy than those that can only get singular results (i.e.
only get pose estimation or activity recognition). To demonstrate
the practicality and robustness of our model, we will demonstrate
our model in different settings (i.e. facing different backgrounds)
and effectively show the accuracy of our network.

Index Terms—hands-free, millimeter-wave, human activity
recognition, pose estimation, machine learning

I. INTRODUCTION

Driven by a wide range of real-world applications, Human
Activity Recognition (HAR) networks have been widely ex-
plored. Many existing hardware devices (e.g. smart watches,
mobile phones) are generally used for HAR, but have lim-
itations due to cost and discomfort. Moreover, other vision-
based sensing devices, such as cameras, can potentially lead
to privacy issues, if leaked. Recent works that utilize wireless
infrastructures (e.g. WiFi signals) have been studied to address
these issues, yet, these issues still continue to remain as
primitive challenges. For example, Wi-Motion [1] analyzes
the amplitude changes in Channel State Information (CSI)
data that result from human interference. However, extracting
features and information directly from WiFi amplitude changes
can result in occlusions, such as noise. Further, the accuracy
in these models can decrease by removing certain subcarriers
used by the CSI data. Although this process is necessary
for dimension reduction, it is possible that the removal of
subcarriers can also withdraw information valuable for HAR.

This demo proposes the use of mmWave sensors to combat
the burden of hardware devices and the obtrusive designs of
other device-free networks. The advantage of utilizing these
sensors is that they are less susceptible to noise and can
be highly accurate when sensing the range of the object. In
addition, rather than a feature selection-based network for
HAR, such as [2], we show that we can leverage the recent
works of human pose estimation for activity classification.
Though advantageous, maneuvering mmWave sensors in this
manner is nevertheless a challenging task. Firstly, the sensor
data does not hold any relative information on human pose

estimation. Thus, recreating a skeleton on mmWave data is
difficult. Secondly, studies utilizing mmWaves have not been
widely explored. This results in time constraints due to having
to collect a plethora of data to train our network. To further
address these challenges, we employ existing work on pose
estimations and show a network that can learn on smaller
amounts of data. We summarize the major contributions of
our work as follows:

• We propose a hands-free system using mmWave sen-
sors that can achieve HAR and create a pose estimated
skeleton performing the classified activity. The proposed
system is robust and can remain accurate during environ-
mental changes (i.e. change in scenario).

• We explore the fiducial features in our mmWave signals
and propose a Convolutional Neural Network (CNN) as
the base of our model.

• We explore different methodologies to address the
scarcity in our collected data. We build a prototype that
can train on static data (i.e. no body movement), but can
still test and recognize dynamic data.

• We develop a teacher-student framework to guide the
processed mmWave data to learn human pose estimations.
We leverage this to make HAR.

II. SYSTEM OVERVIEW

In this section, we elaborate on the architecture of our
proposed framework as shown in Figure 1. Our network
consists of four major elements: data collection & processing,
teacher-student network, training process and testing process.

A. Data Collection & Processing

Firstly, the person performs an activity in front of the camera
and sensor setup. The mmWave sensor captures reflected
signals, while the camera synchronously takes pictures (i.e.
person is the focal point of both camera and sensor). Sec-
ondly, the images taken by the camera are processed through
OpenPose [3], which provides human body key points to be
used as labels. OpenPose provides a total of 18 key points
formatted as a 2-D matrix. However, we detach some of the
other given features (e.g. confidence) and work directly with
the key points. These points are in the form of a standard
coordinate system with two variables, x and y. Thirdly, the
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Fig. 1. Proposed mmWave sensor-based framework.

mmWave sensor data is processed by performing the doppler-
FFT. The doppler-FFT is, in simpler terms, a 2-D Fast Fourier
Transform, along the rows and columns respectively. The key
point labels given from OpenPose and the processed sensor
data are aggregated and served as the training data for our
model.

B. Teacher-Student Network

The aggregation mentioned in the previous section tran-
spires from our teacher-student network, similar to that of [4].
In order for our mmWave data to estimate human poses, we
must append the key point labels to its respective sensor data,
similar to a supervised machine learning task. This data is
forwarded to our HAR model to learn and make predictions.

Our current HAR model is built using a CNN with 4
convolution layers, each followed by a batch normalization,
ReLU activation, and a dropout layer. The final dense layer
has a total of 36 neurons, reshaped from the 18 by 2 matrix
given from the key point labels. The model was trained with a
total of 1050 samples for 150 epochs and an Adam optimizer.
The model can classify amongst three different activities:
stretching, raising dumbbells and sitting down. The breakdown
of the samples was 450, 300, and 300 samples respectively.

C. Training Process

The efficiency in our proposed network lies in the training
process. Many related networks need an abundance of either
dynamic data or a series of static data. However, in order
to classify activities in our model, we only need two to three
samples of static data to train on. For example, if we wanted to
train our network to recognize a person curling dumbbells, we
would need 2 static images for training, as shown in Figure 2.
In detail, each time our sensor captures data, we trigger a total
of 150 frames. Considering that static data does not change
per frame, we can use each frame as a data sample to train
our network.

D. Testing Process

Though our network was trained using static data, we further
test our model with dynamic data. The dynamic data also
contains 150 frames, each frame showing slight movement
of the complete activity. Our model makes a prediction on
the key points in a single frame, and then consecutively plots
to recreate the skeleton performing the activity. The activity

Static Pose 1 Static Pose 2

Fig. 2. Two static postures required for dumbbell raising classification.

classification is done similar to a clustering algorithm, where
the true labels act as the centroids of the clusters. The model
maps the predictions to the closest centroid and forecasts a
result.

III. DEMONSTRATION SETUP

Our demo will showcase our system under two different
scenarios (i.e. facing two different backgrounds). This will
cover the practicality of our model, in that a change in scenery
does not affect our model as long as the distance between the
sensor and the human is relatively fixed.

The facilities required by our demo include: (1) a table to
deploy the sensor, (2) a chair to classify the ”sitting down”
activity, (3) power outlets for the mmWave sensor and laptop.
The estimated setup time required for our demo is about 10
minutes.
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